TAD 1630 GE Genset Engine – Gen Pac

n. $AA = 1764/69.4$	ł
A = 1665/65.6	BB = 1089/42.9
B = 1089/42.9	CC = 2292/90.2

Gen Pac – Genset engine mounted on an expandable base frame. Complete unit with engine, radiator, radiator core guard, fan, fan and belt guard providing reduced delivery time and installation cost and simplified transportation.

- 1. Tropical radiator
- 2. Intercooler
- 3. Gear driven coolant pump
- 4. Air restriciton indicator
- 5. Coolant filter
- 6. Turbocharger
- 7. Air cooled exhaust manifold
- 8. Lift eyelet
- 9. Alternator
- 10. Coolant pipe, inlet
- 11. By-pass oil filter of spin-on type
- 12. Oil cooler
- 13. Full-flow oil filters of spin-on type
- 14. Crankcase ventilation
- 15. Flywheel housing SAE 1
- 16. Relay for inlet manifold heater
- 17. Air filter
- 18. Cable iron
- 19. Inlet manifold heater
- 20. Twin fuel filters of throw-away type
- 21. Coolant pipe, outlet
- 22. Fan guard
- 23. Radiator guard *)
- 24. Starter motor
- 25. Electric speed govenor
- 26. Fuel pipes for tank connection
- 27. Injection pump
- 28. Oil filler
- 29. Belt guard *)
- 30. Automatic belt tensioner
- 31. Expandable base frame

*) Optional

Technical data TAD 1630 GE

Volvo Penta reserves the right to make changes at any time, without notice, as to technical data, prices, materials, standard Equipment, specifications and models, and to discontinue models.

General

In line four stroke diesel engine with dire	ect injection
Turbocharged and air to air intercooled	
Number of cylinders	6
Displacement, total	16.12 litres / 984 in ³
Firing order	1-5-3-6-2-4
Rotation direction, anti-clockwise viewe	d towards flywheel

Bore		144.00 mm	/ 5.67 in			
Stroke		165 mm / 6.50 in				
Compression ratio		15.0:1				
Dry weight, kg/lb	Gen Pac	1795/3954	Engine only	1538/3388*		
Wet weight, kg/lb	Gen Pac	1912/4212	Engine only	1650/3635*		
*) Including radiator and intercooler						

TAD 1630 GE	Speed, rpm	1500	1800
Performance	Test no.	B 3130	21000665/66
Prime Power with fan	kW / hp	395 / 537	430 / 585
Continuous Standby Power with fan	kW / hp	395 / 537	430 / 585
Maximum Standby Power with fan	kW / hp	435 / 592	474 / 645
Mean piston speed	m/s / ft/sec	8.3 / 27.2	9.9 / 32.5
Effective mean pressure at Prime Power	MPa / psi	2.02 / 293	1.86 / 270
Max combustion pressure at Prime Power	MPa / psi	15.0 / 2180	15.5 / 2250
Total mass moment of inertia, J (mR2)	kgm ² / lbft ²	4.22 / 100.1	
Lubrication system			
Prime Power	litre/h / US gal/h	0 11 / 0 029	0 17 / 0 045
Maximum Standby Power	litre/h / US gal/h	0 18 / 0 048	0.21 / 0.055
Oil system capacity including filters	litres	64	0.21 / 0.000
Oil change interval			
CD oil quality	h	300	
VDS oil quality	h	600	
Fuel system			
Specific fuel consumption at			
25% of Prime Power	g/kWh / lb/hph	238 / 0.386	251 / 0.407
50% of Prime Power	g/kWh / lb/hph	210 / 0.340	215 / 0.348
75% of Prime Power	g/kWh / lb/hph	202 / 0.327	208 / 0.337
100% of Prime Power	g/kWh / lb/hph	209 / 0.339	213 / 0.345
Specific fuel consumption at			
25% of Maximum Standby Power	g/kWh / lb/hph	235 / 0.381	244 / 0.395
50% of Maximum Standby Power	g/kWh / lb/hph	202/0.340	213 / 0.345
75% of Maximum Standby Power	g/kWh / lb/hph	204 / 0.330	210/0.340
100% of Maximum Standby Power	g/kWh / lb/hph	216 / 0.350	220 / 0.356
Intake and exhaust system			
Air consumption at	3	00 0 / / / 00	22.4.4.4.2.4
Prime Power (at 27 °C)	m [°] /min / cfm	32.0 / 1130	39.1 / 1381
Maximum Standby Power (at 27 °C)	m°/min / cfm	34.8 / 1229	41.7/1473
Max allowable air intake restriction	kPa / In wc	5/20.1	5/20.1
Heat rejection to exhaust at		054/00400	000 / 00004
Prime Power Mewierwer Steadbur Dewer	kvv / BTU/min	354 / 20132	399/22691
Maximum Standby Power	KWV / BTU/min	405 / 23032	454 / 25819
Drimo Dowor	°C / °E	400 / 015	155 / 850
Fillie Fowel Maximum Standby Dawar		490/915	400 / 015
Maximum Standby Power		510/950	490/915
Exposed and flow of	KFa/III WC	5.0720.1	7/28.1
Drimo Dowor	m ³ /min / cfm	91 7 / 2995	01 5 / 2221
Maximum Standby Power	$m^3/min / cfm$	00.2/2190	101 2 / 2577
		90.37 3109	101.37 3377
Cooling system			
Drimo Dowor	kW// RTI I/min	24 / 1270	27/1540
Maximum Standhy Power	kW//BTI/min	27 / 15/0	30 / 1710
Heat rejection to coolant at		21/1040	567 1710
Drime Dower	kW//BTI/min	179 / 10180	204 / 11602
Maximum Standhy Power	kW / BTI /min	188 / 10692	207/11002
Fan power consumption	kW / hn	12 / 16	20 / 27
	Nov / Hp	12,10	20121

Power Standards The engine performance corresponds to ISO 3046, BS 5514 and DIN 6271. The technical data ap-Piles to an engine without cooling fan and operating on a fund bit 6271. The technical data applies to an engine without cooling fan and operating on a fund bit 6271. The Vig (18360 BTU/b) and a density of 0.84 kg/litre (7.01 lb/US gal, 8.42 lb/lmp gal), also where this involves a deviation from the standards. Power output guaranteed within 0 to +2 % at rated ambient conditions at delivery. Ratings are based on ISO 8528. Engine speed governing in accordance with ISO 3046/IV, class A1 and ISO 8528--5 G2 (G3 with electronic speed governor).

Exhaust emissions

The engine exhaust emissions complies wih EPA, CARB and TA --luft regulations.

Rating Guidelines

PRIME POWER rating corresponds to ISO Standard Power for continuous operation. It is applicable for supplying electrical power at variable load for an unlimited number of hours instead of com-mercially purchased power. A10 % overload capability is available for this rating. CONTINUOUS STANDBY POWER rating corresponds to ISO Power. It is applicable for supplying standby electrical power at variable load for an unlimited number of hours in the event of normal util-

ity power failure. A 10 % overload capability is available for this rating. MAXIMUM STANDBY POWER rating corresponds to ISO Standard Fuel Stop Power. It is applica-

ble for supplying standby electrical power at variable load in areas with well established electrical networks in the event of normal utility power failure. No overload capability is available for this rating.